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Exact ground states for a class of antiferromagnetic 
Heisenberg models with short-range interactions 

D J Klein 
Department of Marine Sciences, Texas A & M University at Galveston, Galveston, Texas 
77553, USA 

Received 10 June 1981 

Abstract. A special class of Heisenberg spin Hamiltonians with short-range antifer- 
romagnetically signed interactions is described. It is demonstrated via a simple group- 
theoretic argument that the ground states to many of these Hamiltonians are KekulC states, 
involving singlet spin-pairing between nearest-neighbour pairs of sites. A number of 
examples are given and previous related work is indicated. In addition to standard 
applications to exchange-coupled atomic ions, the relevance of the present work for the 
simple valence-bond model of conjugated 7-electron networks is mentioned. 

1. Introduction 

The exact ground-state solution of ferromagnetically signed Heisenberg models is an 
important problem that has long been of interest. In the case of a cycle of spin-; sites 
with nearest-neighbour interactions only, exact ground-state properties were deter- 
mined by HulthCn (1938); but it was not till later (Yang and Yang 1966) that HulthCn’s 
eigenstate was proved to be the ground state. In the case of an even cycle of spin-i sites 
with a next-nearest-neighbour interaction half the strength of the nearest-neighbour 
interaction, exact ground states and some of their properties were described by 
Majumdar and Ghosh (1969) and Majumdar (1970); later a proof that the eigenstates 
considered were generally ground states was indicated (van den Broek 1980) with 
special reference to the open chain case. In addition to these two cases exact results are 
obtained for infinite site-spin models (see e.g. Fisher 1964), various infinite-range 
‘uniform’ interaction models (see e.g. Kittel and Shore 1965, DeVries et a1 1973, 
Bowers and McKerrell 1974, Kventsel and Katriel 1979), several models with exact 
local permutational symmetries (Klein and Welsher 1981), and numerous small finite 
systems. 

Here we introduce and describe a special case of antiferromagnetically signed 
(isotropic) Heisenberg models for which exact ground states are obtained. The class 
includes both long- and short-range interaction models of various site spins and applies 
to finite clusters, extended crystals and amorphous solids. Majumdar’s model is 
realised as a particular one-dimensional spin-$ case, as are many of the examples 
involving exact local symmetries. Infinite-range uniform interaction models can even 
be viewed as a special case, which however we do not pursue here. 

We note the well known identity of Dirac (1929) represents a permutation 
exchanging spin indices i and j’ as 

(1) (ij) = 2si si + 5. 
0305-4470/82/020661+ 11$02.00 0 1982 The Institute of Physics 66 1 
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Hence (isotropic) Heisenberg HamiItonians H are elements of the group algebra of the 
symmetric group S N  of permutations on spin indices. The class of models we consider 
involves taking H as a combination of symmetry projectors for various subgroups of S N  
such that each (idempotent) projector has a positive coefficient in H. Because these 
projectors are non-negative definite, such an H is aIso; that is, H has only non-negative 
eigenvalues. Then any state having no component for any of the symmetries of these 
projectors will be a ground state, with ground-state energy 0. 

Here we indicate just some of the more interesting examples found in this general 
class. Rather than using commuting projectors, as in the cases of exact local symmetries 
or infinite-range uniform interactions, we here consider the non-commutingpcase. The 
interactions are limited to a finite range by using just projectors of small symmetric 
groups S, for small collections of nearby sites. Moreover we restrict our attention to the 
case where the ground states are composed of products of singlet-coupled pairs of 
near-neighbour sites. For spin-$ sites such states are already recognised to be of special 
significance in the valence-bond theory of the n-electron networks of conjugated 
hydrocarbons (see e.g. Pauling 1960, Wheland 1955); there (as here) they are termed 
Kekule' stares. On lattices such KekulC states do not exhibit the ordinary types of 
long-range magnetic order, though in some cases they exhibit another type of long- 
range spin-pairing order. 

2. Development 

Some elementary group-theoretic results and notation are useful (see e.g. Ham- 
mermesh 1962). The irreducible representations of S, are labelled by partitions A of n, 
which for the Pauli-allowed case of interest here take the form 

A = [ $ n + s , $ n - ~ ]  (2) 
in correspondence with a coupling of the n spin indices to an overall spin S. The 
fA-dimensional Ath irreducible representation has matrix elements I';u(P) for PE S,. 
The group algebraic matric basis elements for S, are then 

When applied to a state Igu) transforming as the uth row of the gth irreducible 
representation of S,, one finds 

e : u l ~ u )  = s,JLIA~). (4) 

In particular we utilise the (idempotent) projectors e;. 
Let us first consider the case of N spin-$ sites and assume that for the system there is 

a connected graph such that at least one 'dimer covering' is possible, i.e. there is at least 
one way to colour bonds of the graph such that each site has exactly one coloured bond 
incident on it. An example is given in figure 1. Then let S n i ( i )  denote the symmetric 
group for the indices of site i and its n, - 1 nearest neighbours. The matric basis element 
projector for the A = [ n i l  totally symmetric irreducible representation with f " ' ]  = 1 is 

t A single state can be a simultaneous eigenstate to several operators which do not commute (on the whole 
space); for example an S state is a simultaneous eigenstate to L,, L,  and L,. That operators are 
non-commuting merely implies that there is no complete basis of simultaneous eigenstates. 



Ground states for antiferromagnetic Heisenberg modeh 663 

Figure 1. A Kekult structure shown on a portion of the triangular lattice. 

denoted d[nil(i), and the Hamiltonian to be considered is 

H = C Jiernil(i) 
i 

with the Ji being positive exchange parameters. Now associate with each dimer 
covering A of the system graph a KekulC state [A) such that each dimer (or ‘coloured 
bond’) of A corresponds to a singlet-coupled pair of spins in IA). Thus each KekulC state 
is an overall singlet, and further .ernil(i)lA) = 0 because a pair of the indices of S n i ( i )  are 
coupled to a singlet so that the whole set can have no maximal spin A = [nil component. 
Hence 

HIA) = 0 VA 6) 
and along with the non-negative definite feature of H, this implies that all Kekult states 
are ground states to H, with ground-state energy 0. 

It is possible to decorate H such that one or more of the KekulC states remain as 
ground states. For instance, one could consider the symmetric group Spi { i }  of permu- 
tations on the pi indices of site i, its nearest neighbours, and their neighbours. Then the 
d t u { i }  for any A corresponding to a spin S 3 (pi - ni + 1)/2 gives 0 when applied to a 
KekulC state ]A), since \A) involves at least ni - 1 singlet-coupled pairs of sites within 
those acted upon by Spi { i } .  Hence if any of the .ett{!} are addedt into H with positive 
coefficients, all the KekulC states are still ground states. Projectors for various other 
sets of indices may often be added in while preserving the KekulC states as ground 
states; for example, the totally symmetric projector for any site set including the indices 
of S,,#( i )  could be so added. Another type of decoration retains only a subset of the 
KekulC states as ground states. For example, consider a subset of bonds every one of 

t More generally, we could add in 6:” with coefficient a,,, such that a,” is the (t,  u)th element of a non-negative 
definite matrix. This is in effect simply using a new choice for the matrix basis, which is undefined up to a 
unitary transformation. 
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which is coloured by one special A, say Ao. Then the A = [2] triplet projectors for each of 
these bonds give 0 when applied to [Ao); and if these triplet projectors are added into H 
with positive coefficients, /Ao) remains a ground state. 

Even for site spins s > 4, KekulC states (with neighbour pairs of singlet-coupled sites) 
may still be ground states to suitable Hamiltonians. One simply identifies 2s spin-; 
indices with each site and requires that the spin-; indices on each site be coupled to the 
maximum spin, s. So if we consider site i to have z ,  - 1 nearest neighbours and take 
n, = sz,, then the Hamiltonian of ( 5 )  has the KekulC states as ground states. In fact, since 
for a KekulC state IA) two of the z ,  + 1 sites of drnil(i) are coupled to a singlet, IA) has no 
component of any spin S for these sites with S > ( z ,  - 1)s; hence any eA(i)  for A with 
S > ( z ,  - 1)s can be added on with positive coefficients and still retain such a IA) as a 
ground state. Various decorations are again possible. 

The Hamiltonian of ( 5 )  may be recast in terms of exchange operators ( i j ) ,  or disjoint 
products thereof, as described elsewhere (Klein 1980). For the special linear combina- 
tions of permutations occurring in ( 5 )  the reduction to such involutory permutations can 
be carried out especially simply, as is done in the Appendix here. If desired, these 
involutary permutations may in turn be recast in terms of spin operators via the Dirac 
identity of (1). The calculation of the central idempotents 

just requires symmetric group characters ,&, and these are easily computed via 
Coleman’s (1966) rules. 

An alternative approach to the various projectors is also possible via Lowdin’s 
(1964) formulation 

# S  s * s - T ( T  + 1) 
& A  = IIT S ( S  + 1) - T ( T  + 1) 

where S corresponds to A as in (2). Various e:,could be recovered by multiplying dA by 
central idempotents for subsets of sites, so that the t-labels would identify different 
spin-coupling paths. 

3. Examples 

For a cycle of N sites we have n; = 3, and if Ji = J independent of i, then (via the results 
in the Appendix) 

For cycles of N = 4 , 6 , 8  and 10 this is essentially the Hamiltonian for which Majumdar 
and Ghosh (1969) noted that the ground states were Kekult states. They noted that the 
KekulC states remained eigenstates for general even N, as did Majumdar (1970) who 
also pointed out these states are lacking in the ordinary long-range magnetic order. 
Majumdar et a1 (1972) studied the low-lying excitation spectrum. That these KekulC 
states exhibit a type of long-range spin-pairing order has been pointed out (Klein and 
Garcia-Bach 1979) and its implications for spin-Peierls-type transitions suggested. 
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Finally, van den Broek (1980) published a proof that the KekulC state for a linear chaint 
was in fact a ground state, for arbitrary even N. 

For the case of a honeycomb or graphite lattice ni = 4. Then on taking Ji = J 
independent of i, we have (via the results in the Appendix) 

J J J 
3 i-j 6 i--j 12 i 

H = -  (i, j )+ -  c ( i ,  j)+-c [(i, i‘)(”’, i”’)+(i ,  i”)(i’ ,  i”’)+(i ,  if”)(?, i ” ) - 3 ]  (10) 

where the first sum is over all nearest-neighbour pairs of sites, the second sum is over all 
next-nearest-neighbour pairs of sites, and the third sum is over all sites i with i‘, i“, i”’ 
denoting the three nearest neighbours to site i. In the simple valence-bond theory of 
graphite the systen is  modelled by the nearest-neighbour Heisenberg Hamiltonian and 
the ground-state soiution is often viewed (see e.g. Pauling (1960) or Wheland (1955)) in 
an approximate manner as a linear combination of the KekulC states, which are here 
exact solutions. Because of the success of such simple views in chemistry, it seems likely 
that a model perturbed from the simple nearest-neighbour model in the direction of (9) 
might be relevant. 

Indeed this last suggestion can be further supported. For graphite and other 
conjugated hydrocarbons the Hubbard model, or even better the Parisier-Parr-Pople 
model, is commonly presumed to be a ‘better’ model. (See e.g. Linderberg and Ohrne 
1973.) But near the atomic limit of this model degenerate perturbation theory can be 
applied (see e.g. Buleavski 1966, Klein and Seitz 1973, Takahashi 1977) to derive 
effective Heisenberg models for the lower-lying states. The lowest-order terms yield a 
nearest-neighbour Heisenberg model and the next corrections yield terms as we have in 
(9), typically with like signs for the interactions. It seems, however, that the non- 
nearest-neighbour terms in say (9) or (10) are about twice as strong as those appropriate 
for conjugated hydrocarbons; nevertheless they might still serve as good zero-order 
models. 

In the simple valence-bond model of saturated hydrocarbons (or diamond) each 
C atom is represented by a (sp3-hybridised) tetrahedron of spin-: sites, while each 
H atom is represented by a single spin-: site. The graph we utilise is in close 
correspondence with the classical chemical structure; for example, for ethane we have 
the graph of figure 2, where the more heavily drawn edges represent the classical 

Figure 2. The graph representing the valence electron system for ethane, C2H6. 

chemical bonds and also identify a special KekulC structure Ao. Now consider the 
Hamiltonian 

where the first sum is over C-atom sites, the second sum is over H-atom sites, and the 

t The model took J, = JN = 0 and J, = J, i = 2 to N - 1, with triplet projectors for the end bonds added in with 
coefficients $J. The same proof applies to the cyclic model. 
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third sum is over interatomic C-C bonds (in Ao). Utilising the formulae from the 
Appendix, one obtains coefficients of Jc+$Jo and $(Jc+ JH +Jo)  for the transpositions 
of the C-C and C-H bonds, respectively, while all other interactions involve the JO as a 
coefficient. Here /Ao) is the ground state, and moreover /Ao) is retained as the ground 
state upon decorating H, so as to enhance further the model as a good zero-order 
description of saturated hydrocarbons. Such decorations include adding on, with 
non-negative coefficients, projectors or for triples of sites, say i, j ,  k with i and j 
on the same C atom and k on another atom bonded to j ;  here the index t is constrained 
to identify the [ 2 ]  subsymmetry for j ,  k (which is orthogonal to the [12 ]  symmetry for j ,  k 
present in JAo)); that is, 

( 1 2 )  

Similar decorations involving e:  for [ 4 ] ,  [ 3 , 1 ]  and [22 ]  as well as various partitions of 
n = 5 are possible, so long as t identifies a subsymmetry of [ 2 ]  for bonded pairs in Ao. 

For the case of a triangular lattice, Anderson (1973)  and Fazelcas and Anderson 
(1974)  have developed arguments and calculations describing the ground state of the 
nearest-neighbour Heisenberg model in terms of KekulC states. Again we can con- 
struct related models with the KekulC structures being exact ground states. Making the 
choice of equation ( 5 )  and expanding H in terms of permutations, as in the Appendix, 
one finds the coefficients of the (nearest-neighbour) transpositions to be ferro- 
magnetically signed. A Hamiltonian more similar to that of Fazekas and Anderson is 

e ~ ~ ~ ' ] =  e[*~l1+{1 + ( j k ) )  = $11 - 3( i j )  - 3( ik )  - 2( i j ) ] .  

H = J e["(a)  ( 1 3 )  
Q 

where the sum is over quintets of sites as in figure 3 .  Then 

H = ? J  2 ( i j ) + 2 J  ($+.If ( i j )  
5 

i C j  i < j  i<j  

where the sums here are for the types of interactions indicated in figure 4 .  One of the 
ground states to ( 1 4 )  is indicated in figure 1. 

Figure 3. A portion a of the triangular lattice such as referred to in equation (13). 

For the case of an even cycle of spin-1 sites, we associate two spin-; indices with each 
site, and we let e ^ ( i )  with A a partition of II = 6 denote a central idempotent for a site i 
and its two nearest neighbours. Then 
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Figure 4. A listing of the different interactions referred to in equation (14). Each broken 
line indicates a transposition between the spins of so-joined sites. 

has the two Kekult? states as ground states, with eigenvalue 0. Representing H in terms 
of permutations via the results of the Appendix, noting the restriction to the space of 
spin-1 sites, and using the Dirac identity of (l), we obtain H in terms of site spin 
operators, si for site i .  If we choose J o = 5 J 1 ,  then the terms triquadratic in spin 
operators are eliminated, and 

H = z~~ C si . si+ + si + 1 (ni + Y) (16) 
i i i 

where Ai is the sum over the six biquadratic terms formed as a product of any (ordered) 
pair of distinct quadratic operators si-1 si, si si+l and si-l si+l. Additional terms 
involving $"(i) or rE3*'(i) could also be included in H, while still retaining the KekulC 
states as ground states. 

Finally we note that there are Hamiltonians for which the Kekul6 states are 
eigenstates but for which it is not necessarily obvious whether they are ground states. 
One such example for an even cycle of spin-s sites is 

where the exchange parameters Ji for two sites an even distance apart are related to 
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those an odd distance apart via 

J ,  =&;.-I + J;.+I), i = even. 

This includes the Hamiltonian of equation (9) as a special case. 

(18) 

4. Properties and conclusions 

Ground-state expectation values may be considered. The states are isotropic in spin 
space so that an expectation value over s:s: is just 4 of that over s, s,. Now if i and j are 
other than nearest neighbours, it is quite simple to show that the expectation value of 
any KekulC state /A)  over s, * s, is 0, so that there is no long-range magnetic order of the 
conventional type in such a IA). However, since the different KekulC states may be 
degenerate, linear combinations are also of interest; hence we consider off -diagonal 
matrix elements between pairs of KekulC states. This is conveniently done via Pauling’s 
(1933) ‘island counting’ technique, which generalises (Klein 1979) to sites of arbitrary 
spin s. In this approach one first considers the overlap 

(AIA’) = f (2s + l)’(A,A’)-N’z (19) 

where N is the number of spin-s sites and I ( A ,  A‘) is the number of islands (i.e. different 
disjoint pieces) in the superposition graph obtained by superimposing the two graphs 
for A and A’. Next one notes that 

(20) 
where the deletion factor /:A is f s(s + 1) or 0, with the value 0 arising if i and j occur in 
different islands. Now if i and j are a graph distance m apart, i.e. the shortest path on 
the lattice between i and j consists of m bonds, then fy Z 0 implies that i and j are in 
the same island which must consist of at least 2m sites. But in (AIA) or (A’IA‘) these 2m 
sites would be in m different islands, so that (AIA’) would have a deficit of m - 1 islands 
compared with (AIA). Hence I(AlA‘)l would, from (19), be less than (AlA) = 1 by a factor 
of at least (2s + l)-(m-l); so that s(s + 1)(2s + l)-(m-l) is an upper bound to I(Als, * s,IA’)I. 
Thence for any linear combination 1s) of Kekulk states, we have 

(21) 
where m is the graphical distance between i and j .  Thus for this general ground state I$) 
we have no conventional long-range magnetic order, i.e. the expectation value of (21) 
approaches 0 as m + 00. In some cases another type of long-range order is known (Klein 
and Garcia-Bach 1979) to exist. 

In conclusion, we see there are numerous examples of short-range antiferromag- 
netically signed Heisenberg Hamiltonians for which the ground state(s) is (or are) easily 
and exactly obtained in any dimension. The occurrence of these models is conveniently 
viewed in terms of simple group-theoretic ideas. Typically the ground states do not 
exhibit classical magnetic ordering, so that, as pointed out by a referee, the correspond- 
ing Heisenberg spin Hamiltonians provide examples of so-called ‘frustrated’ models. 
The present models, with exactly soluble ground states, may be used as checks on 
approximate many-body techniques which are intended for application on related 
models. Furthermore, these new Hamiltonians may themselves serve as zero-order 
descriptions upon which many-body perturbation techniques can be applied to treat 
other models. 

(AIS[ * s,lA) = ftA’(A/A’) 

/($Is, * s,l$)l zs s(s + 1)(2s + 1)-“-” 



Ground states for antiferromagnetic Heisenberg models 669 

Appendix 

Here we consider the reduction of class operators, i.e. sums over all permutations of a 
given conjugacy class of S,, to a linear combination of those for involutary, i.e. 
self-inverse, permutations. Of course, such a reduction is limited to the representation 
of these operators in spin space, but it is known (see e.g. Klein 1980) that it is possible 
since P + P-' for any PE S, can be expressed as a linear combination of involutary 
permutations. Indeed, these class operators for involutary permutations form a basis 
for the subalgebra of elements commuting with every element of the group algebra of 
S,, because in addition to spanning this centrum these class operators are equal in 
number to the basis of central idempotents &*. 

We label a conjugacy class of S, by a list of the lengths of its non-unit cycles. If z 2 
disjoint cycles of the same length 1 2 2 occur in a class abel, this is indicated by 1' rather 
than z repeated 1's. The number of elements in class p of S, is denoted \ P I , ,  and the 
'normalised' class p operator, which is the sum over elements of class p divided by ( P I , ,  is 
denoted (p),.  

We start with the fairly well known result 

(123) + (132) = (12) + (23) + (13) - 1 (AI) 

2(3)3 = 3(2)3- 1. 642) 

for three-cycles in spin space. In our present notation this is 

Now 131,(3), is simply the sum of 131,/2 different pairs of a three-cycle and its inverse; 
and via equations like (Al)  for each pair this yields, aside from a scalar -13/,/2, a 
number of two-cycles whose sum must be a multiple of (2),. Since there are just 3131,/2 
of these two-cycles, this evidently is the multiple 3131,/2121, of the simple sum 121,(2),. 
Hence 

2(3), = 3(2), - 1. (A31 
More generally, we see that the expansion coefficients (z Ip) for (p) ,  in terms of the (2'),, 
for involutary permutations, are independent of n. Further, the same arguments lead us 
to conclude that if p = U, 5 consists of two subsequences (T and 5 with 

Next, to determine the reductions as in (A2) for larger single cycles, we develop an 
inductive procedure involving products (2)" (n - 1)". Direct multiplication yields a 
result with a non-zero coefficient for (n) , ,  but first making the presumed-known 
reduction for (n - 1)" and then multiplying yields only ( p ) ,  involving cycles of size no 
greater length than n - 1. Hence (n), is determined in terms of ( p ) ,  with cycles no 
greater than n - 1. For instance, for n = 4, 

(2)4(3)4 = 84)4 (A6) 

(A7) 

and 

(2)4(3)4 = %2)4(3(2)4 - 1) = (3)4 -k &')4 -+(2>4 + a. 
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But combining (A6) with (A7), then using (A2), we find 

(A81 

Hence a general inductive procedure is established for the reduction of class operators. 
Applying these methods, we find that 

2(4>" = 02>, + W, - 1, 

1 (4)4 = 2(3)4 $(22)4 - 2(2)4 + 4 = 4(22)4 4- (2)4 - 3. 

4(5), = 5(2'), - 1,  

4(6), = (23), + 6(22), - 3, 

8(7), = 7(2'), + 7(2'), - 7(2), + 1, 

which along with (A3) and (A5) determines the reduction for any class of SI. 

permutations we use 
Finally, to obtain the desired totally symmetric projector in terms of involutary 

Then utilising (A9), we find 

6[31 = (2)3, 

4~ '~ ]=(2~)4+4(2 )4 -  1, 

4e"' = 3(2')5 + 2(2>5 - 1, 

8~[~'=(2')6+9(2~)6-2,  

8 ~ ' ~ '  = 4(2')7 + 8(2')7 - 3(2)7 - 1. 

These formulae yield directly several Hamiltonians for which the exact ground state is 
known, including those of equations (9), (lo), (ll), (13) and (14) here. Also utilising 
Coleman's (1966) character formulae, we find that 

8 ~ [ ~ . ~ ~ =  -5(Z3)6- 15(22)6+20(2)6 (A121 
which is used in (14). Likewise formulae for other central idempotents can be 
generated. 
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